热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

推荐|一个超好的OpenCV4学习社区

社区数位资深OpenCV开发高手负责答疑解惑,免费项目技术咨询,加入才是真爱OpenCV4介绍OpenCV(OpenSourceComputerVisi

社区数位资深OpenCV开发高手负责答疑解惑,免费项目技术咨询,加入才是真爱

OpenCV4 介绍

OpenCV (Open Source Computer Vision Library)是开放源代码的计算机视觉库,在工业视觉与机器视觉领域、摄像头开发、医疗设备开发与医学图像分析、无人机开发与嵌入式视觉领域,OpenCV都是不可或缺的主流开发技术之一。OpenCV4自发布以来,其对主流深度学习框架的支持与集成;代码执行层面全面的速度与性能提升;基于C++11的API全新接口与大量代码的重构优化;使得OpenCV4全面超越之前的版本功能,获得了速度与性能提升,学习曲线更加平缓。

学习社区 介绍

对有经验的开发者来说学习OpenCV4变得比以前更加的容易,但对初次接触OpenCV的开发者来说,学习OpenCV依然很难,特别是OpenCV C++的版本(工程应用多数都是基于C++版本)。这里就给大家推荐一个专门学习OpenCV4的社区- OpenCV研习社,社区包括以下精华内容:

  • OpenCV4 系统化课程140课时

  • Tensorflow 基础课程27课时

  • OpenCV 经典案例代码

  • 400 篇CV方向论文资料

  • 过往一年的各种技术答疑更新帖子

上述内容加入即可查看,资料代码全部可以下载,特别值得一提的是OpenCV 140课时内容演示都是C++与Python两套API代码,最大程度的满足不同层次的开发者的学习需求。从零基础开始认真学习,掌握OpenCV开发技术,成为合格的OpenCV开发者!加入之后课程问题与其它技术咨询可以直接向星主与嘉宾提问得到解答。

星主:贾志刚

两本图像处理与OpenCV开发相关书籍作者,精通OpenCV开发技术,对深度学习在视觉领域应用,模型压缩与推理加速等方面都有丰富的项目经验,超过10年的计算机视觉与图像处理开发与编程经验,CSDN博客专家、51CTO学院金牌讲师。

嘉宾:禾路

资深OpenCV开发者,超过10年以上OpenCV C++开发经验,OpenCV框架源码的contributor之一,《学习OpenCV3》中文版图书的审阅者之一、博客园图像处理方面的知名博主。

嘉宾:言有三

计算机视觉与深度学习资深开发者,专注深度学习技术在计算机视觉领域应用,对各种场景网络模型与结构、数据集、各种工程项目与实践环节的技巧有深入理解。《深度学习之图像识别-核心技术与案例实战》一书作者。

OpenCV研习社 开放运营短短的四个多月时间,加入人数超过2000+,总计主题分享超过1000+, 点赞次数超过2000+,有图为证:

如何加入 - OpenCV研习社

扫码 即可加入OpenCV研习社

原价: 99

限时优惠: 69

附:140课时 OpenCV4 内容提纲

001. 图像读取与显示

002. 图像色彩空间转换

003. 图像对象的创建与赋值

004. 图像像素的读写操作

005. 图像像素的算术操作

006. LUT的作用与用法

007. 图像像素的逻辑操作

008. 通道分离与合并

009. 图像色彩空间转换

010. 图像像素值统计

011. 像素归一化

012. 视频文件的读写

013. 图像翻转

014. 图像插值

015. 几何形状绘制

016. 图像ROI与ROI操作

017. 图像直方图

018. 图像直方图均衡化

019. 图像直方图比较

020. 图像直方图反向投影

021. 图像卷积操作

022. 图像均值与高斯模糊

023. 中值模糊

024. 图像噪声

025. 图像去噪声

026. 高斯双边模糊

027. 均值迁移模糊

028. 图像积分图算法

029. 快速的图像边缘滤波算法

030. OpenCV自定义的滤波器

031. 图像梯度–Sobel算子

032. 图像梯度–更多梯度算子

033. 图像梯度–拉普拉斯算子

034. 图像锐化

035. USM锐化增强算法

036. Canny边缘检测器

037. 图像金字塔

038. 拉普拉斯金字塔

039. 图像模板匹配

040. 二值图像介绍

041. OpenCV中的基本阈值操作

042. OTSU二值寻找算法

043. TRIANGLE二值寻找算法

044. 自适应阈值算法

045. 图像二值化与去噪

046. 二值图像联通组件寻找

047. 二值图像连通组件状态统计

048. 二值图像分析—轮廓发现

049. 二值图像分析—轮廓外接矩形

050. 二值图像分析 – 矩形面积与弧长

051. 二值图像分析—使用轮廓逼近

052. 二值图像分析—用几何矩计算轮廓中心与横纵比过滤

053. 二值图像分析—Hu矩实现轮廓匹配

054. 二值图像分析—对轮廓圆与椭圆拟合

055. 二值图像分析—凸包检测]

056. 二值图像分析–直线拟合与极值点寻找

057. 二值图像分析—点多边形测试

058. 二值图像分析—寻找最大内接圆

059. 二值图像分析—霍夫直线检测

060. 二值图像分析—霍夫直线检测二

061. 二值图像分析—霍夫圆检测

062. 图像形态学—膨胀与腐蚀

063. 图像形态学—膨胀与腐蚀

064. 图像形态学—开操作

065. 图像形态学—闭操作

066. 图像形态学—开闭操作时候结构元素应用演示

067. 图像形态学—顶帽操作

068. 图像形态学—黑帽操作

069. 图像形态学—图像梯度

070. 形态学应用—用基本梯度实现轮廓分析

071. 形态学操作—击中击不中

072. 二值图像分析—缺陷检测一

073. 二值图像分析—缺陷检测二

074. 二值图像分析—提取最大轮廓与编码关键点

075. 图像去水印/修复

076. 图像透视变换应用

077. 视频读写与处理

078. 识别与跟踪视频中的特定颜色对象

079. 视频分析—背景/前景提取

080. 视频分析—背景消除与前景ROI提取

081. 角点检测—Harris角点检测

082. 角点检测—shi-tomas角点检测

083. 角点检测—亚像素级别角点检测

084. 视频分析—移动对象的KLT光流跟踪算法

085. 视频分析—KLT光流跟踪 02

086. 视频分析—稠密光流分析

087. 视频分析—基于帧差法实现移动对象分析

088. 视频分析—基于均值迁移的对象移动分析

089. 视频分析—基于连续自适应均值迁移的对象移动分析

090. 视频分析—对象移动轨迹绘制

091. 对象检测—HAAR级联检测器使用

092. 对象检测—HAAR特征介绍

093. 对象检测—LBP特征介绍

094. ORB FAST特征关键点检测

095. BRIEF特征描述子 匹配

096. 描述子匹配

097. 基于描述子匹配的已知对象定位

098. SIFT特征提取—关键点提取

099. SIFT特征提取—描述子生成

100. HOG特征与行人检测

101. HOG特征描述子—多尺度检测

102. HOG特征描述子—提取描述子

103. HOG特征描述子—使用描述子特征生成样本数据

104. SVM线性分类器

105. HOG特征描述子—使用HOG进行对象检测

106. AKAZE特征与描述子

107. Brisk特征提取与描述子匹配

108. 特征提取之关键点检测—GFTTDetector

109. BLOB特征分析—simpleblobdetector使用

110. KMeans 数据分类

111. KMeans图像分割

112. KMeans图像分割—背景替换

113. KMeans图像分割—主色彩提取

114. KNN算法介绍

115. KNN算法应用

116. 决策树算法 介绍与使用

117. 图像均值漂移分割

118. Grabcut图像分割

119. Grabcut图像分割—背景替换

120. 二维码检测与识别

121. OpenCV DNN 获取导入模型各层信息

122. OpenCV DNN 实现图像分类

123. OpenCV DNN 为模型运行设置目标设备与计算后台

124. OpenCV DNN 基于SSD实现对象检测

125. OpenCV DNN 基于SSD实现实时视频检测

126. OpenCV DNN 基于残差网络的人脸检测

127. OpenCV DNN 基于残差网络的视频人脸检测

128. OpenCV DNN 直接调用tensorflow的导出模型

129. OpenCV DNN 调用openpose模型实现姿态评估

130. OpenCV DNN 支持YOLO对象检测网络运行

131. OpenCV DNN 支持YOLOv3-tiny版本实时对象检测

132. OpenCV DNN单张与多张图像的推断

133. OpenCV DNN 图像颜色化模型使用

134. OpenCV DNN ENet实现图像分割

135. OpenCV DNN 实时快速的图像风格迁移

136. OpenCV DNN解析网络输出结果

137. OpenCV DNN 实现性别与年龄预测

138. OpenCV DNN 使用OpenVINO加速

139. 案例:识别0~9印刷体数字 —Part1

140. 案例:识别0~9印刷体数字 —Part2

低于一本书的价格,给自己加持新技能,遇见更好的未来!

现在扫码加入我们:

更多惊喜

加入之后,安装知识星球APP完成下面几步操作,分享可获得赏金



推荐阅读
  • 在Windows系统中安装TensorFlow GPU版的详细指南与常见问题解决
    在Windows系统中安装TensorFlow GPU版是许多深度学习初学者面临的挑战。本文详细介绍了安装过程中的每一个步骤,并针对常见的问题提供了有效的解决方案。通过本文的指导,读者可以顺利地完成安装并避免常见的陷阱。 ... [详细]
  • 卓盟科技:动态资源加载技术的兼容性优化与升级 | Android 开发者案例分享
    随着游戏内容日益复杂,资源加载过程已不仅仅是简单的进度显示,而是连接玩家与开发者的桥梁。玩家对快速加载的需求越来越高,这意味着开发者需要不断优化和提升动态资源加载技术的兼容性和性能。卓盟科技通过一系列的技术创新,不仅提高了加载速度,还确保了不同设备和系统的兼容性,为用户提供更加流畅的游戏体验。 ... [详细]
  • Web开发框架概览:Java与JavaScript技术及框架综述
    Web开发涉及服务器端和客户端的协同工作。在服务器端,Java是一种优秀的编程语言,适用于构建各种功能模块,如通过Servlet实现特定服务。客户端则主要依赖HTML进行内容展示,同时借助JavaScript增强交互性和动态效果。此外,现代Web开发还广泛使用各种框架和库,如Spring Boot、React和Vue.js,以提高开发效率和应用性能。 ... [详细]
  • 在第七天的深度学习课程中,我们将重点探讨DGL框架的高级应用,特别是在官方文档指导下进行数据集的下载与预处理。通过详细的步骤说明和实用技巧,帮助读者高效地构建和优化图神经网络的数据管道。此外,我们还将介绍如何利用DGL提供的模块化工具,实现数据的快速加载和预处理,以提升模型训练的效率和准确性。 ... [详细]
  • 本文将带你快速了解 SpringMVC 框架的基本使用方法,通过实现一个简单的 Controller 并在浏览器中访问,展示 SpringMVC 的强大与简便。 ... [详细]
  • 在《Cocos2d-x学习笔记:基础概念解析与内存管理机制深入探讨》中,详细介绍了Cocos2d-x的基础概念,并深入分析了其内存管理机制。特别是针对Boost库引入的智能指针管理方法进行了详细的讲解,例如在处理鱼的运动过程中,可以通过编写自定义函数来动态计算角度变化,利用CallFunc回调机制实现高效的游戏逻辑控制。此外,文章还探讨了如何通过智能指针优化资源管理和避免内存泄漏,为开发者提供了实用的编程技巧和最佳实践。 ... [详细]
  • 深入对话上海视九叶文鑫:HTML5技术引领智能电视新趋势
    深入对话上海视九叶文鑫:HTML5技术引领智能电视新趋势 ... [详细]
  • 利用Python与Android进行高效移动应用开发
    通过结合Python和Android,可以实现高效的移动应用开发。首先,需要安装Scripting Layer for Android (SL4A),这是一个开源项目,旨在为Android系统提供脚本语言支持。SL4A不仅简化了开发流程,还允许开发者使用Python等高级语言编写脚本,从而提高开发效率和代码可维护性。此外,SL4A还支持多种其他脚本语言,进一步扩展了其应用范围。通过这种方式,开发者可以快速构建功能丰富的移动应用,同时保持较高的灵活性和可扩展性。 ... [详细]
  • 【前端开发】深入探讨 RequireJS 与性能优化策略
    随着前端技术的迅速发展,RequireJS虽然不再像以往那样吸引关注,但其在模块化加载方面的优势仍然值得深入探讨。本文将详细介绍RequireJS的基本概念及其作为模块加载工具的核心功能,并重点分析其性能优化策略,帮助开发者更好地理解和应用这一工具,提升前端项目的加载速度和整体性能。 ... [详细]
  • 利用PaddleSharp模块在C#中实现图像文字识别功能测试
    PaddleSharp 是 PaddleInferenceCAPI 的 C# 封装库,适用于 Windows (x64)、NVIDIA GPU 和 Linux (Ubuntu 20.04) 等平台。本文详细介绍了如何使用 PaddleSharp 在 C# 环境中实现图像文字识别功能,并进行了全面的功能测试,验证了其在多种硬件配置下的稳定性和准确性。 ... [详细]
  • NVIDIA最新推出的Ampere架构标志着显卡技术的一次重大突破,不仅在性能上实现了显著提升,还在能效比方面进行了深度优化。该架构融合了创新设计与技术改进,为用户带来更加流畅的图形处理体验,同时降低了功耗,提升了计算效率。 ... [详细]
  • 表面缺陷检测数据集综述及GitHub开源项目推荐
    本文综述了表面缺陷检测领域的数据集,并推荐了多个GitHub上的开源项目。通过对现有文献和数据集的系统整理,为研究人员提供了全面的资源参考,有助于推动该领域的发展和技术进步。 ... [详细]
  • 我正致力于利用Azure Functions和System.IO.Compression库,将大量文件高效地压缩并存储到Azure Blob容器中。这种方法不仅提高了存储效率,还优化了数据管理流程。通过这种方式,可以显著减少存储成本,并提升数据访问速度。 ... [详细]
  • 前言: 网上搭建k8s的文章很多,但很多都无法按其说明在阿里云ecs服务器成功搭建,所以我就花了些时间基于自己成功搭建k8s的步骤写了个操作手册,希望对想搭建k8s环境的盆友有所帮 ... [详细]
  • 在处理大文件上传时,服务端为何无法直接接收?这主要与 PHP 配置文件 `php.ini` 中的几个关键参数有关,如 `upload_max_filesize` 和 `post_max_size`。这些参数分别限制了单个文件的最大上传大小和整个 POST 请求的数据量。为了实现大文件的高效上传,可以通过文件分割与分片上传的方法来解决。本文将详细介绍这一实现方法,并提供相应的代码示例,帮助开发者更好地理解和应用这一技术。 ... [详细]
author-avatar
捕鱼达人2502868831
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有